Meiotic double-strand breaks in yeast artificial chromosomes containing human DNA.
نویسندگان
چکیده
Meiotic recombination in the yeast Saccharomyces cerevisiae is initiated by double-strand breaks (DSB) in chromosomal DNA. These DSB, which can be mapped in the rad 50S mutant yeast strain, are caused by a topoisomerase II-like enzyme, the protein Spo11. Evidence suggests that this protein is located in the axial element of the meiotic chromosome which implies that the DSB are located in these chromosomes in the vicinity of the bases of the DNA loops. We have found that in the yeast artificial chromosomes carrying human DNA, at the level of resolution obtained by pulsed field gel electrophoresis (PFGE), the meiotic DSB in the diploid yeast are co-localized with the DNase I hypersensitive sites (HS) in a haploid strain of yeast. These HS are located close to sequences which, under stress, have the potential to form secondary structures containing unpaired nucleotides. Clusters of such sequences could be a hallmark of the bases of the chromatin loops.
منابع مشابه
Involvement of Sir2/4 in silencing of DNA breakage and recombination on mouse YACs during yeast meiosis.
Yeast artificial chromosomes (YACs) that contain human DNA backbone undergo DNA double-strand breaks (DSBs) and recombination during yeast meiosis at rates similar to the yeast native chromosomes. Surprisingly, YACs containing DNA covering a recombination hot spot in the mouse major histocompatibility complex class III region do not show meiotic DSBs and undergo meiotic recombination at reduced...
متن کاملDNA double strand break repair, chromosome synapsis and transcriptional silencing in meiosis.
Chromosome pairing and synapsis during meiotic prophase requires the formation and repair of DNA double-strand breaks (DSBs) by the topoisomerase-like enzyme SPO11. Chromosomes, or chromosomal regions, that lack a pairing partner, such as the largely heterologous X and Y chromosomes, show delayed meiotic DSB repair and are transcriptionally silenced. Herein, we review meiosis-specific aspects o...
متن کاملThe CAF-1 and Hir Histone Chaperones Associate with Sites of Meiotic Double-Strand Breaks in Budding Yeast
In the meiotic prophase, programmed DNA double-strand breaks (DSB) are introduced along chromosomes to promote homolog pairing and recombination. Although meiotic DSBs usually occur in nucleosome-depleted, accessible regions of chromatin, their repair by homologous recombination takes place in a nucleosomal environment. Nucleosomes may represent an obstacle for the recombination machinery and t...
متن کاملMek1 suppression of meiotic double-strand break repair is specific to sister chromatids, chromosome autonomous and independent of Rec8 cohesin complexes.
During meiosis, recombination is directed to occur between homologous chromosomes to create connections necessary for proper segregation at meiosis I. Partner choice is determined at the time of strand invasion and is mediated by two recombinases: Rad51 and the meiosis-specific Dmc1. In budding yeast, interhomolog bias is created in part by the activity of a meiosis-specific kinase, Mek1, which...
متن کاملAlignment of Homologous Chromosomes and Effective Repair of Programmed DNA Double-Strand Breaks during Mouse Meiosis Require the Minichromosome Maintenance Domain Containing 2 (MCMDC2) Protein
Orderly chromosome segregation during the first meiotic division requires meiotic recombination to form crossovers between homologous chromosomes (homologues). Members of the minichromosome maintenance (MCM) helicase family have been implicated in meiotic recombination. In addition, they have roles in initiation of DNA replication, DNA mismatch repair and mitotic DNA double-strand break repair....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic acids research
دوره 26 10 شماره
صفحات -
تاریخ انتشار 1998